Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universidade Estadua...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Food Research International
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental study of physical and rheological properties of grape juice using different temperatures and concentrations. Part II: Merlot

Authors: Maurício Bonatto Machado de Castilhos; Lilian Fachin Leonardo Betiol; Gisandro Reis de Carvalho; Javier Telis-Romero;

Experimental study of physical and rheological properties of grape juice using different temperatures and concentrations. Part II: Merlot

Abstract

The effect of the temperature and concentration on rheological behavior of Merlot juice concentrates was assessed using a rheometer over a wide range of temperature (1-66°C) and concentrations (13.6-45.0Brix) at shear rates of 0.84-212.1 1/s. The Ostwald-De Waele was the best rheological model fitted the data (R2=0.99967 and relative error=7.99%). The consistency levels were significantly reduced with the increase of temperature and increased with the increase of the concentrations, ranging from 0.1766 (13.6Brix at 66°C) to 19.1140Pa·sn (45.0Brix at 1°C). The flow behavior index presented no up or downward pattern when the temperatures were compared. The flow activation energy ranged from 13.95 (45.0Brix) to 24.88KJ/mol (21.0Brix) with a R2=0.9822 and 0.9812, respectively. Density and specific heat were influenced by both temperature and concentration; however, thermal conductivity was only influenced by concentration and temperature in two cases (13.6 and 29.0Brix). The data showed the potential use of Merlot juice concentrates as wine chaptalization agent in winemaking.

Keywords

Merlot, Physical properties, Grape juice, Food Handling, Temperature, Thermal Conductivity, Wine, 541, Models, Chemical, Fruit, Activation energy, Vitis, Rheology, Food Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Green
bronze