
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Growth dynamics, climate sensitivity and water use efficiency in pure vs. mixed pine and beech stands in Trentino (Italy)

handle: 10449/49599 , 11573/1715296 , 11591/387137 , 11695/74227
Abstract Understanding to what extent species mixtures modify the growth of trees and their responses to climate, in comparison with pure stands, is important to support forest adaptation and mitigation strategies. In this sense, information stored in tree rings can be useful to evaluate whether the positive relationship between species diversity and tree productivity holds true under disturbance (e.g., drought). This paper aimed at assessing (i) how radial growth of trees responded to local variation in climate patterns (Standardised Precipitation-Evapotranspiration Index; SPEI), and (ii) whether there was a relationship with intrinsic water use efficiency (WUEi) and tree-ring δ18O in two important tree species, occurring in pure and mixed forest stands. Three sites with similar topographic and pedo-climatic conditions were identified in a single location in the Italian Alps. The first two are characterized by pure stands, respectively dominated by European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.). The third site refers to a mixed stand of both previous species. In particular, in order to assess the annual changes in WUEi, we analysed δ13C in tree rings. The influence of the stomatal conductance was also investigated through δ18O. Our results indicated that: (i) Basal Area Increments (BAI) consistently increased in all stands except for the pure Scots pine stand, in the 1994–2003 period; (ii) SPEI highlighted a drought period between 1991 and 2007 (62.2% of the average precipitation); and (iii) the WUEi values were generally higher in pure than in mixed stands, especially for European beech. The divergence between BAI and SPEI values in the 1990s and early 2000s could be a consequence of moderate thinning. We conclude that past forest management (namely thinning) can be more influential on tree growth than current climatic oscillations.
- Sapienza University of Rome Italy
- University of Campania "Luigi Vanvitelli" Italy
- Fondazione Edmund Mach Italy
- Fondazione Edmund Mach Italy
- University of Molise Italy
550, Alpine environments; Climate adaptation; Climate change; Mountain forests; Stable isotopes;, Settore BIO/03 - BOTANICA AMBIENTALE E APPLICATA, Alpine environments; Climate adaptation; Climate change; Mountain forests; Stable isotopes; Forestry; Nature and Landscape Conservation; Management, Monitoring, Policy and Law, Climate adaptation, Climate change, Alpine environments; Climate adaptation; Climate change; Mountain forests; Stable isotopes; Forestry; Nature and Landscape Conservation; Management; Monitoring; Policy and Law, Alpine environments, Mountain forests, Stable isotopes
550, Alpine environments; Climate adaptation; Climate change; Mountain forests; Stable isotopes;, Settore BIO/03 - BOTANICA AMBIENTALE E APPLICATA, Alpine environments; Climate adaptation; Climate change; Mountain forests; Stable isotopes; Forestry; Nature and Landscape Conservation; Management, Monitoring, Policy and Law, Climate adaptation, Climate change, Alpine environments; Climate adaptation; Climate change; Mountain forests; Stable isotopes; Forestry; Nature and Landscape Conservation; Management; Monitoring; Policy and Law, Alpine environments, Mountain forests, Stable isotopes
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
