Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The char structure characterization from the coal reflectogram

Authors: Tang, Liangguang; Gupta, Rajender; Sheng, Changdong; Wall, Terry Fitzgerald;

The char structure characterization from the coal reflectogram

Abstract

Abstract Coal is a heterogeneous substance and its heterogeneity is identified and characterized by variation in reflectance. The main objective of this paper is to characterize the heterogeneity of char and to correlate it with the coal reflectogram, which accounts for both rank and maceral composition effects. Chars from two density fractions in a set of coals were obtained in a Drop Tube Furnace (DTF) at 1400 °C in N 2 environment. The chars were examined under a Scanning Electron Microscope (SEM) and the morphology information was obtained from the image-processing technique. The average porosity of char changes systematically with the FMR of its parent coals (defined as the summation of each reflectance multiplied with its frequency). The char porosity increased with an increase in FMR up to a critical value around 98. With further increase in FMR, the corresponding char becomes dense. The char macro porosity distribution was found to be related to the coal reflectogram. In general, the char porosity distribution shows two peaks, which corresponds to the inertinite and vitrinite peaks in reflectogram. The intensity depends on the maceral content. The relationship between the char porosity and coal reflectance for this set of sample has been found, which is strongly dependent on the coal rank. However, these findings cannot be applied to coals with a strong maceral association (microlithotype).

Country
Australia
Keywords

particles, coal reflectogram, FMR, 620, reactivity, rank, morphology, char porosity distribution, combustion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Average