Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao RE.PUBLIC@POLIMI Res...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A predictive multi-step kinetic model of coal devolatilization

Authors: SOMMARIVA, SAMUELE; MAFFEI, TIZIANO; G. Migliavacca; FARAVELLI, TIZIANO; RANZI, ELISEO MARIA;

A predictive multi-step kinetic model of coal devolatilization

Abstract

Devolatilization is the first step in coal combustion and gasification, thus an accurate kinetic modeling is relevant for the optimal design of these processes. In this work a relatively simple but flexible kinetic model is used to predict the thermal degradation of different coals in a wide range of operating conditions. The main feature of the model lies in its predictive capability: the elemental composition of the starting coal and the operating conditions are the only information required. Three reference coals are used to characterize the devolatilization process. The pyrolysis of each reference coal is described with a multi-step kinetic mechanism effective both at high and low heating rates. The devolatilization of the actual coal is simply obtained as a linear combination of the thermal degradation of the reference coals. The complete kinetic model refers to ∼30 reactions and lumped species, which makes this scheme suitable for being adopted in fluidynamic computations. A wide collection of comparisons between model prediction and experimental data validates this model both in terms of residual char and in terms of detailed gas and tar composition. The importance of secondary gas-phase reactions, mainly at high pressure, is also discussed and verified on the basis of an existing detailed kinetic scheme of pyrolysis and oxidation of hydrocarbon fuels.

Country
Italy
Keywords

Coal devolatilization and pyrolysis; Predictive multi-step kinetics; Secondary gas-phase reactions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    114
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
114
Top 1%
Top 10%
Top 10%