Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantification of strong and weak acidities in bio-oil via non-aqueous potentiometric titration

Authors: Wu, Liping; Hu, Xun; Mourant, D.; Wang, Y.; Kelly, Cyril; Garcia-Perez, M.; He, M.; +1 Authors

Quantification of strong and weak acidities in bio-oil via non-aqueous potentiometric titration

Abstract

In this study a non-aqueous potentiometric titration method has been developed to quantify the carboxylic acids and phenolics in bio-oil. Quarternary ammonium hydroxide was used as the titrant and a mixture of tert-butanol and acetone was used as the solvent to differentiate the acidic components with distinct acidities. The heavy carboxylic acids, which cannot be identified with GC–MS, account for ca. 29–45% (mol basis) of all the carboxylic acids in the bio-oil from mallee wood. In addition, both the heavy and light phenolic components could be identified with the titration method developed, while GC–MS can only identify some light phenolic compounds (3% mol basis). The titration method was further applied to the determination of the concentrations of acidic components in the bio-oils from mallee wood, bark and leaves. The pyrolysis of mallee wood produced the highest yields of acidic components while that of leaves produce the lowest. The successful development of the titration method for quantification of these heavy carboxylic acids and phenolics provides useful information for the further upgrading of bio-oil.

Country
Australia
Related Organizations
Keywords

phenolic compound, potentiometric titration, 570, total acidic compounds, bio-oil, carboxylic acid, 540

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%