Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gasification of a solid recovered fuel in a pilot scale fluidized bed reactor

Authors: ARENA, Umberto; Di Gregorio F.;

Gasification of a solid recovered fuel in a pilot scale fluidized bed reactor

Abstract

Abstract The paper investigates the technical feasibility of an air gasification process of a Solid Recovered Fuel (SRF) obtained from municipal solid waste. A pilot scale bubbling fluidized bed gasifier, having a feedstock capacity of about 70 kg/h and a maximum thermal output of about 400 kW, provided the experimental data: the complete composition of the syngas (including the tar, particulate and acid/basic gas contents), the chemical and physical characterization of the bed material and that of entrained fines collected at the cyclone. The experimental runs were carried out by reaching a condition of thermal and chemical steady state under values of equivalence ratio ranging from 0.25 to 0.33. The results indicate that the selected SRF can be conveniently gasified, yielding a syngas of valuable quality for energy applications. The rather high content of tar in the syngas indicates that the more appropriate plant configuration should be that of a “thermal gasifier”, with the direct combustion of the syngas in a burner ad hoc designed, coupled with an adequate energy-conversion device.

Country
Italy
Keywords

Fluidized bed reactor; Gasification; Solid recovered fuel; Waste-to-energy;

Powered by OpenAIRE graph
Found an issue? Give us feedback