
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evaluating the regulated emissions, air toxics, ultrafine particles, and black carbon from SI-PFI and SI-DI vehicles operating on different ethanol and iso-butanol blends

Evaluating the regulated emissions, air toxics, ultrafine particles, and black carbon from SI-PFI and SI-DI vehicles operating on different ethanol and iso-butanol blends
This study explores the influence of different mid-level ethanol and iso-butanol blends on the regulated emissions, gaseous air toxics, and particle emissions from three spark ignition port fuel injection (SI-PFI) vehicles and two SI direct injection (DI) vehicles over triplicates Federal Test Procedure (FTP) and Unified Cycles (UC). This study utilized seven fuels with varying ethanol and iso-butanol contents, including E10, E15, E20, Bu16, Bu24, Bu32, and a mixture of E20 and Bu16 resulting in E10/Bu8. Emissions included nitrogen oxides (NOx), carbon monoxide (CO), total hydrocarbons (THC), and carbon dioxide (CO2). Additionally, carbonyl compounds, 1,3-butadiene, benzene, ethylbenzene, toluene, and xylenes were quantified in the exhaust. Particulate matter (PM), total particle number emissions, and black carbon concentrations were also measured. For the regulated emissions, the use of higher ethanol and butanol blends showed some decreases in THC, CO, NOx, and CO2 emissions with the results generally lacking strong trends for the fleet as a whole. Particle mass, number and black carbon emissions were higher for the SI-DI vehicles in comparison with the PFI vehicles, and showed some trends of lower emissions with the use of higher ethanol and butanol blends, with some differences between the fuels being statistically significant. Formaldehyde and acetaldehyde were the most abundant aldehydes in the exhaust, while butyraldehyde showed consistent increases with the butanol blends. The aromatic volatile organic compounds did not show consistent fuel trends.
- Bourns College of Engineering United States
- University of California System United States
- University of California, Riverside United States
- University of California, Riverside United States
- Bourns College of Engineering United States
2 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).119 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
