Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fuelarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fuel
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
e-Prints Soton
Article . 2014 . Peer-reviewed
Data sources: e-Prints Soton
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Repository TU/e
Article . 2014
Data sources: Repository TU/e
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Near-field local flame extinction of oxy-syngas non-premixed jet flames: A DNS study

Authors: J. A. van Oijen; Xi Jiang; Kai H. Luo; Kai H. Luo; K.K.J. Ranga Dinesh;

Near-field local flame extinction of oxy-syngas non-premixed jet flames: A DNS study

Abstract

An investigation of the local flame extinction of H2/CO oxy-syngas and syngas-air nonpremixed jet flames was carried out using three-dimensional direct numerical simulations (DNS) with detailed chemistry by using flamelet generated manifold chemistry (FGM). The work has two main objectives: identify the influence of the Reynolds number on the oxy-syngas flame structure, and to clarify the local flame extinction of oxy-syngas and syngas-air flames at a higher Reynolds number. Two oxy-syngas flames at Reynolds numbers 3000 and 6000 and one syngas-air flame at Reynolds number 6000 were simulated. The scattered data, probability density function distributions and fully burning probability provide the local flame characteristics of oxy-syngas and syngas-air nonpremixed jet flames. It is found that the H2/CO oxy-syngas flame burns well compared to the syngas-air flame and the high Reynolds number causes more flow straining, resulting in higher scalar dissipation rates which lead to lower temperatures and eventually local flame extinction. The oxy-syngas flames burns more vigorously than the syngas-air flame with the same adiabatic flame temperature of approximately 2400 K. Keywords : DNS; Oxy-syngas flame; Syngas-air flame; Probability density functions; Fully burning probability

Countries
Netherlands, Netherlands, United Kingdom, Netherlands, Netherlands
Keywords

660, 540, 532

Powered by OpenAIRE graph
Found an issue? Give us feedback