Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pyrolysis characteristics of GFRP (Glass Fiber Reinforced Plastic) under non-isothermal conditions

Authors: Jae Ho Kim; Jae Ho Kim; Jae Goo Lee; Jae Goo Lee; Geon Hoe Koo; Myung Won Seo; Myung Won Seo; +6 Authors

Pyrolysis characteristics of GFRP (Glass Fiber Reinforced Plastic) under non-isothermal conditions

Abstract

Abstract The pyrolysis characteristics of GFRP (Glass Fiber Reinforced Plastic), which is a thermosetting plastic composed of glass fibers and polymer compounds, were determined under non-isothermal conditions while heating at 5–20 °C/min from 500 to 900 °C using a thermo-gravimetric analyzer (TGA) and a batch-type pyrolyzer. The kinetic parameters for the GFRP were derived from the Freedman method with resultant activation energy ranging from 41.4 kJ/mol to 78.4 kJ/mol. The main components of the product gases were carbon monoxide from the ether and carbonyl decomposition of polymer and hydrogen from the aromatic ring breakage. The structural variations in the GFRP char were determined using BET, SEM, and FT-IR techniques. The surface area of GFRP char exhibited its maximum value at 600 °C, decreasing at higher temperatures with the collapsing macro-pore structure. The decomposed portion of the polymers attached to the glass fiber increased when increasing the temperature from SEM image. These data are useful for understanding the GFRP pyrolysis and gasification processes.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 1%
Top 10%
Top 10%