Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Torrefaction of tomato industry residues

Authors: A. Pizzi; E. Foppa Pedretti; G. Ciceri; G. Martignon; Giorgio Rossini; Daniele Duca; Giuseppe Toscano;

Torrefaction of tomato industry residues

Abstract

Abstract The standardization is an important aspect for fuel products. Some residual biomass are highly heterogeneous making their energy use rather difficult. Torrefaction can represent an interesting process to improve the standardization and quality of the lignocellulosic biomass. In the present research torrefaction has been applied on tomato peels, an important Italian industry residue. Different residence times and torrefaction temperatures have been employed in a bench top torrefaction reactor. Proximate, ultimate, thermogravimetric and infrared analyses of raw and torrefied material have been performed to evaluate the influence of the process. From the mildest condition studied to the most severe one, mass yield, energy yield and energy densification vary in the ranges of 94.7–69.9%, 98.0–86.0% and 1.04–1.23 respectively. According to mass and energy yields, ultimate analysis and thermogravimetric profiles, temperature parameter results more significant than residence time. Torrefaction makes the material increasingly hydrophobic as torrefaction temperature increases. This results in a more biologically stable and standardized material suitable to be employed as fuel for energy application. The results of this paper provide useful indications and suggest a mild torrefaction.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 10%
Top 10%
Top 10%