
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Numerical simulation of the combustion process of a pellet-drop-feed boiler

This paper presents a transient model for the simulation of biomass combustion in a fixed bed boiler fed through particle drop. The method combines classical CFD techniques, which are used to simulate the gas phase, with a set of Eulerian variables defined to model the solid phase and Lagrangian trajectories that model the particle drop. Several submodels are implemented to simulate the numerous processes that occur during the combustion of the solid phase. These submodels include the thermal conversion of biomass, heat and mass transfer, particle shrinkage and bed compaction as well as the interaction of the DPM (Discrete Phase Model) trajectories and the bed variables. The predictions are contrasted with various experimental tests, which provide reasonably good results and demonstrate the overall good behavior of the models. The simulation facilitates an understanding of the heat transfer inside the boiler and the instability of the emission measurements.
- Universidade de Vigo Spain
- Universidade de Vigo Spain
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).64 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
