
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Oxy-combustion of coal, lignite and biomass: A techno-economic analysis for a large scale Carbon Capture and Storage (CCS) project in Romania

Abstract Power generation sector is facing important challenges to develop energy efficient solutions at the same time with reducing the greenhouse gas emissions (mainly CO 2 ). Oxy-fuel combustion is a promising power generation technology for reducing both energy and cost penalties for CO 2 capture. This paper presents a detailed techno-economic analysis for oxy-combustion power plant to generate about 350 MW net power with a carbon capture rate higher than 90%. Both fossil fuels (coal and lignite) and renewable energy sources (sawdust) were used to fuel a super-critical power plant (live steam parameters: 582 °C/29 MPa). The assessment is based on numerical analysis, the models of various power plant sub-systems being built in ChemCAD and Thermflow software. As benchmark option used to quantify the CO 2 capture energy and cost penalties, the same super-critical power plant without CCS was considered. The investigated coal, lignite and sawdust oxy-combustion cases show an energy penalty of 9–12 net efficiency percentage points, 37–50% increase of total capital investment, the O&M costs are increasing with 7–15% and the electricity cost with 54–95% (all compared to coal-fuelled non-CCS case). Sensitivity studies were also performed to evaluate the influence of various economic parameters on electricity and CO 2 avoidance costs.
- Babeș-Bolyai University Romania
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).84 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
