
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Destruction of toluene by rotating gliding arc discharge

Abstract Non-thermal plasma is considered as an alternative treatment of tar present in the effluent from gasification processes. In this study, a novel rotating gliding arc (RGA) discharge reactor was developed for tar destruction. Toluene in nitrogen flow was used as a tar surrogate. The physical features of RGA discharge and its application to toluene destruction are investigated at different input concentrations and total gas flow rates. As a result, the highest destruction efficiency could exceed 95%, with a toluene concentration of 10 g/N m3 and a total flow rate of 0.24 N m3/h. The two major gaseous products are H2 and C2H2, with maximum selectivity of 39.35% and 27.0%, respectively. A higher input concentration slightly reduces this destruction efficiency but the energy efficiency further expanded, with a highest value of 16.61 g of toluene eliminated/kW h. In addition, the liquid and solid byproducts are collected downstream of the RGA reactor and determined qualitatively and semi-quantitatively. The amount and structure of these by-products is instructive for reaching a better comprehension of the chemical consequences of plasma treatment to the model compound and to the carrier gas nitrogen.
- Zhejiang Ocean University China (People's Republic of)
- State Key Laboratory of Clean Energy Utilization China (People's Republic of)
- Zhejiang Ocean University China (People's Republic of)
- State Key Laboratory of Clean Energy Utilization China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).146 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
