

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effect of co-firing on emissions and deposition during fluidized bed oxy-combustion

handle: 10261/168061
The relevance of coal oxy-firing in fluidized bed reactors has increased during the last years as an alternative for the development of CO2 capture technologies. The addition of biomass in the fuel blend is well-known in conventional combustion, but few experiences are found under oxy-combustion conditions. This paper discusses the results obtained when oxy-firing anthracite and corn stover in a lab-scale fluidized bed, paying attention to pollutant emissions, deposition rates and composition of the ashes. While SO2 emissions are affected by the chlorine content supplied with the biomass, NOx are much more dependent on operating conditions in a similar way to conventional combustion. As concerns the ash composition, chlorine is detected in fly ashes while the bed solids are mostly composed by aluminosilicates. Oxy-firing increases the chlorine detected in fly ashes in comparison to the air-fired tests. Deposition rates are barely modified by the O2/CO2 atmosphere; severe deposition is only detected for the blend with the highest chlorine content. Mixed Ca-K sulfates are found in deposits, minimizing the risk of chlorine-induced corrosion. The work described in this paper is being partially funded by the R+D Spanish National Program from the Spanish Ministry of Economy and Competitiveness, under the Project ENE2012- 39114. The project is also co-funded by the European Commission (European Regional Development Funds). Peer reviewed
- Spanish National Research Council Spain
- University of Zaragoza Spain
- Instituto de Carboquímica Spain
Ashes, Emissions, Fluidized beds, Oxy-combustion, Biomass, Deposition
Ashes, Emissions, Fluidized beds, Oxy-combustion, Biomass, Deposition
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).32 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 41 download downloads 111 - 41views111downloads
Data source Views Downloads DIGITAL.CSIC 41 111


