Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of spray collapses at elevated ambient pressure and flash boiling conditions using multi-hole gasoline direct injector

Authors: Zhi Wang; Jianxin Wang; Hengjie Guo; Yanfei Li; Xiao Ma; Hongming Xu; Haichun Ding;

Comparison of spray collapses at elevated ambient pressure and flash boiling conditions using multi-hole gasoline direct injector

Abstract

Abstract In this study, the spray characteristics of a five-hole gasoline direct injector were investigated in a constant volume vessel. The absolute ambient pressure ranged from 0.5 to 10.0 bar, and the fuel temperatures were 20 °C and 80 °C. High-speed imaging and phase Doppler measurement technique were utilized to investigate the spray morphology and the droplet dynamics, respectively. Spray collapses were observed in the near field under the elevated ambient pressure (higher than 1.0 bar) conditions and in the far field under the flash boiling conditions in both macroscopic and microscopic levels. In addition, under the elevated ambient pressure conditions, the droplets at the inner side of the target jet were larger than those at the outer side, due to the increased probability of droplet coalescence as a result of spray collapse. Whilst, slight increase in droplet diameter in the inner side of the target jet was also found under the flash boiling conditions. Furthermore, the near-field collapse at the elevated ambient pressure conditions was attributed to the jet-air interaction, termed as jet-induced spray collapse; and the far-field collapse under the flash boiling conditions was attributed to the dramatic temperature drop and the resultant vapor condensation, termed as condensation-induced spray collapse.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 1%
Top 10%
Top 1%