Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental and numerical study of the convective mass transfer of solvent in the Expanding-Solvent SAGD process

Authors: Mingzhe Dong; Brij B. Maini; Dongqi Ji; Lin Meng;

Experimental and numerical study of the convective mass transfer of solvent in the Expanding-Solvent SAGD process

Abstract

Abstract In the Expanding-Solvent Steam-Assisted Gravity Drainage (ES-SAGD) process, the mass transfer of the dissolved solvent in the steam chamber boundary is critical to the oil production performance. In this study, experimental and numerical simulation approaches are used to investigate the gravity-driven convective movement of solvent in the steam chamber boundary in ES-SAGD. The experiments are conducted in a two-dimensional (2-D) sandpack model, in which a sloping gas-liquid interface in a closed system is developed as an analog of the steam chamber boundary in ES-SAGD. Thus, the flow along the sloping gas-liquid interface is used to represent the flow in the steam chamber boundary in ES-SAGD. Solvent mass transfer is observed by its concentration variation in the direction perpendicular to the flow surface. Later, CMG STARS is used as the simulator to execute the numerical simulations, and the simulation successfully captured the experimental results. In this study, the findings demonstrate the existence of convective solvent movement along the sloping gas-liquid interface. Furthermore, the results show that there is accelerated solvent movement along the interface under high permeability, and slow movement along the interface under high flow rate and high fluid viscosity. Diffusion and dispersion are tested by varying the corresponding coefficients in the physical and numerical models, and results show that these phenomena have negligible effect on the transverse solvent mass transfer process. This study found that gravity-driven convection is the dominant mechanism of solvent mass transfer in the steam chamber boundary in ES-SAGD.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%