Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Liquefaction of natural rubber to liquid fuels via hydrous pyrolysis

Authors: Wan Mohd Ashri Wan Daud; Nabeel Ahmad; Nabeel Ahmad; Faisal Abnisa;

Liquefaction of natural rubber to liquid fuels via hydrous pyrolysis

Abstract

Abstract In this study, the natural rubber (NR) was liquefied to produce liquid fuels using hydrous pyrolysis technique. The study was performed in the autoclave batch reactor at different temperatures (300–400 °C), with different water to natural rubber mass ratios (1:1–5:1) and different reaction times (15–75 min). The effect of different parameters then was evaluated on the liquid product in term of quantity and quality. The results showed that the highest liquid yield of 76 wt% was obtained at temperature, H2O/material mass ratio and time of 375 °C, 3:1 and 30 min respectively. Among the parameters, temperature was found to be the most important parameter, showing a notable positive effect on the liquid oil quality and quantity. The characterization results showed that the oil had high energy density, low oxygen and sulfur contents, and non-acidic. The GC–MS analysis showed that the obtained oil was dominated by alkenes, aromatics and alkyls. From all characteristic results it showed that the oil from NR was more suitable to be used as fuel compare to the oil derived from scrap tire, where the study on hydrous pyrolysis of scrap tire was also provided in this manuscript as comparative study. In addition, the production of oil from the hydrous pyrolysis of NR in Malaysia could add to the energy potential about 15 PJ/year or equivalent to 2.5 million barrels of oil per year.

Country
Malaysia
Keywords

660, TP Chemical technology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
bronze