Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A data-driven model for predicting the effect of temperature on oil-water relative permeability

Authors: Sajjad Esmaeili; Hemanta Sarma; Thomas Harding; Brij Maini;

A data-driven model for predicting the effect of temperature on oil-water relative permeability

Abstract

Abstract Several empirical models have been proposed by scholars to capture the temperature’s impact on relative permeability for a specific rock/fluid system, often using very limited dataset of measured relative permeability values, which makes these models inapplicable to a wider range of rock-fluid characteristics. The current study presents a new data-driven model to predict the two-phase oil/water relative permeability over a wide range of temperature in unconsolidated sand and sandstone formations. We found that the carbonate rock systems have different characteristics and the reported high temperature relative permeability data for them is limited, which prevented us from including them alongside the sand systems. For developing the model, the Least Square Support Vector Machine (LSSVM) in the form of a supervised learning approach was implemented, in which the coupled simulated annealing optimization technique was employed for calculation of LSSVM hyper-parameters. To gather a comprehensive dataset for constructing the model, 626 experimental oil relative permeability and 547 experimental water relative permeability data points were obtained from the open literature. To identify the doubtful data points (the outliers) the method of Leverage Value Statistics was applied. The temperature (ranging from 21 to 200 °C), water saturation, oil viscosity (ranging from 0.42 to 1190 cP), water viscosity (ranging from 0.136 to 1.1 cP), and the absolute permeability (ranging from 152 to 95,000 mD) were used as the independent variables in the model. The statistical analysis of the obtained LSSVM for prediction of relative permeability demonstrated that the coefficient of determination, root mean square error, and average absolute error were 0.9987, 0.0111, and 5.36% for oil relative permeability and 0.9991, 0.0056, and 8.40% for water relative permeability. The comparison of statistical parameters of this model with other reported relative permeability models showed that this model is more reliable for estimating the oil and water relative permeability including its dependence on temperature and therefore it can be used for reservoir simulation studies, when experimentally measured data are not available.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 1%