Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aberdeen University ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fuel
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel approach for solving nonlinear flow equations: The next step towards an accurate assessment of shale gas resources

Authors: Yashar Bezyan; Mohammad Ebadi; Shahab Gerami; Roozbeh Rafati; Mohammad Sharifi; Dmitry Koroteev;

A novel approach for solving nonlinear flow equations: The next step towards an accurate assessment of shale gas resources

Abstract

Abstract As ultra-tight porous media that include organic contents, shale gas resources are technically known as complex systems having various mechanisms that impact storage and flow. The slippage, Knudsen diffusion, the process of desorption, an adsorbed layer that affects apparent permeability, and solute gas in kerogen are recognized to be the most important ones. However, simultaneous effects of multi-mechanism flow and storage, and influences of scattered organic contents on shale gas flow behaviour are not well-understood yet. According to the mass conservation law, a basic mathematical model has been developed to investigate, step-by-step, the effects of different changes that are introduced, and examine whether patterns of how kerogen is distributed affect the production plateaus. The discretization of the second-order nonlinear Partial Differential Equation (PDE) that is evolved results in a certain number of nonlinear simultaneous algebraic equations, which are conventionally solved with the application of Newton’s method. To overcome the inherent difficulties of the initial guess, the derivations, and the inversion of the Jacobian matrix, a new application of Particle Swarm Optimization (PSO) as a nonlinear solver was applied to extract the anticipated pressure profile for each step in time outside the bounds of the reference equations. The results show that not only can the PSO effectively meet the required criteria, but also it performed faster than conventional techniques, especially in cases with a larger number of grids that encompass more phenomena. It was further revealed that the insertion of a multi-mechanism apparent permeability model in which the pore radius is also a pressure-dependent parameter causes the lower rate of production. A higher level of production has been recorded after including storage terms of adsorption and solute gas in kerogens. Although different patterns of kerogen distribution have finally overlapped, the different taken trend of each production profile underlines the impact of kerogen distribution as an important parameter within the procedure of history matching.

Country
United Kingdom
Keywords

adsorbed gas, Newton’s method, 610, TA Engineering (General). Civil engineering (General), shale gas reservoirs, TA, Particle Swarm Optimization, apparent permeability, kerogen distribution

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
hybrid