Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Behaviour of primary catalysts in the biomass steam gasification in a fountain confined spouted bed

Authors: Javier Bilbao; Maria Cortazar; Gartzen Lopez; Jon Alvarez; Maider Amutio; Martin Olazar;

Behaviour of primary catalysts in the biomass steam gasification in a fountain confined spouted bed

Abstract

Abstract The performances of the primary catalysts olivine, dolomite, γ-alumina and FCC spent catalyst were evaluated in the continuous steam gasification of sawdust in a bench-scale plant equipped with a fountain confined conical spouted bed reactor. The experiments were carried out at 850 °C, and the efficiency of the gasification process was defined by gas yield, H2 production, tar concentration and composition, and carbon conversion efficiency. The benefits of the fountain confiner not only helped to improve the gas-solid contact, and therefore favoured the primary catalysts’ reforming and cracking activity, but also enhanced H2 production and reduce tar formation. Thus, dolomite and γ-alumina recorded the lowest values of tar, 5.0 and 6.7 g Nm−3, respectively, which corresponded to 79% and 72% tar reduction compared to the inert sand, whereas olivine and the FCC spent catalyst recorded higher tar contents, 20.6 and 16.2 g Nm−3, respectively. It is noteworthy that light PAHs were the most abundant species in the tar (60 wt% of the whole tar content).

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    80
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
80
Top 1%
Top 10%
Top 1%