Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Image-based core-scale real gas apparent permeability from pore-scale experimental data in shale reservoirs

Authors: Zhangxin Chen; Hai Sun; Dongying Wang; Dongying Wang; Wenhui Song; Jun Yao;

Image-based core-scale real gas apparent permeability from pore-scale experimental data in shale reservoirs

Abstract

Abstract This paper presents a new upscaling method to derive the core-scale apparent gas permeability from an improved pore-scale permeability model and experimental data, with more rigorous incorporation of varying gas storage/transport mechanisms in nano/micro pores. First, in use of SEM images of a gas-rich shale field example in Sichuan Basin from our lab, pore network models of inorganic-matter (IOM) and organic-matter (OM) are characterized by using a digital-core technique. Next, an improved pore-scale real gas apparent permeability is modeled rigorously for both IOM/OM, respectively, with 1) bulk gas transport, gas adsorption, surface diffusion, pore-size confined phase behavior, and stress-dependent rock properties and 2) an additional reduction in inorganic pore sizes by water film adhered on pore surfaces. Core-scale permeability is then derived by assembling the permeabilities of stochastically distributed IOM/OM patches with different pore network models properties using the Monte Carlo sampling method. The new core-scale permeability model is validated by pulse-decay permeability experiment. Moreover, the representative elementary volume (REV) size is determined by analyzing the relative standard deviation of apparent gas permeability in cases with different sample sizes. The contributions of different gas transport mechanisms are discussed, and the impacts of stress-dependence for several field examples (i.e., Sichuan, Pierre and Barnett Basins) and water film with varying relative humidity (RH) on core-scale apparent permeability are analyzed. This work provides an effective approach to determine the core-scale shale permeability by directly using pore-scale experimental data, which is a common challenge in the unconventional resources.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%