

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Gasoline-ethanol blend formulation to mimic laminar flame speed and auto-ignition quality in automotive engines

handle: 11380/1190109
Abstract Several environment agencies worldwide have identified biofuels as a viable solution to meet the stringent targets imposed by future regulations in terms of on-road transport emissions. In the last decades, petroleum-based gasoline has been increasingly blended with oxygenated fuels, mostly ethanol. Blending ethanol with gasoline has two major effects: an increase of the octane number, thus promoting new scenarios for engine efficiency optimization, and a potential reduction of soot emissions. 3D-CFD simulations represent a powerful tool to optimize the use of ethanol-gasoline blends in internal combustion engines. Since most of the combustion models implemented in 3D-CFD codes are based on the “flamelet assumption”, they require laminar flame speed as an input. Therefore, a thorough understanding of the gasoline-ethanol blend chemical behavior at engine-relevant conditions is crucial. While several laminar flame speed correlations are available in literature for both gasoline and pure ethanol at ambient conditions, none is available, to the extent of authors’ knowledge, to describe laminar flame speed of gasoline-ethanol blends (for different ethanol volume contents) at engine relevant conditions. For this reason, in the present work, laminar flame speed correlations based on 1D detailed chemical kinetics calculations are derived targeting typical full-load engine-like conditions, for different ethanol-gasoline blends. A methodology providing a surrogate able to match crucial properties of a fuel is presented at first and validated against available experimental data. Then, laminar flame speed correlations obtained from 1D chemical kinetics simulations are proposed for each fuel blend surrogate.
1D chemical kinetics simulation; Engine-like conditions; ETRF surrogate; Gasoline-ethanol blend; Internal combustion engine; Laminar flame speed correlation
1D chemical kinetics simulation; Engine-like conditions; ETRF surrogate; Gasoline-ethanol blend; Internal combustion engine; Laminar flame speed correlation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).47 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1% visibility views 157 - 157views
Data source Views Downloads IRIS UNIMORE - Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia 157 0

