Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental investigation on the temperature profile of large scale RP – 5 aviation kerosene pool fire in an open space

Authors: Yanming Ding; Xiangfeng Chen; Xiangfeng Chen; Shaohua Mao; Kaihua Lu; Yang Tao; Yunsheng Zhao;

Experimental investigation on the temperature profile of large scale RP – 5 aviation kerosene pool fire in an open space

Abstract

Abstract This paper investigates the temperature profile of large scale RP – 5 aviation kerosene pool fire in an open space through a series of large scale experiments of 1 m2, 5 m2, 10 m2, 25 m2 pool sizes. The temperature profile is acquired by thermocouple trees positioned in various distances to the pool centerline, while the ambient wind velocity is captured by four transducers in the experimental field. Results show that the large scale pool fire behaves different to the used small to medium scale experiments. The mass loss rate is in good agreement with Blinov and Khudyakov’s results, but the vertical temperature is much lower than the McCaffery’s results due to the reduced global combustion efficiency as more sooty smoke produced. The three regimes in McCaffery’s model is redefined, correlating well with the vertical temperature profile upon the pool centerline. Gaussian Fit is well proposed for the lateral temperature profile at the pool base level, however as the ambient wind inevitable, the fire plume would be tilted to the downstream direction. Finally, the isothermal diagrams of fire plume for various pool sizes are plotted showing the temperature field of plumes, and also the tilt angle of plumes is presented.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%