Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UNSWorksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Image-based fracture pipe network modelling for prediction of coal permeability

Authors: Jing, Y; Armstrong, RT; Mostaghimi, P;

Image-based fracture pipe network modelling for prediction of coal permeability

Abstract

Abstract In coal seam gas (CSG) reservoirs, the underlying fracture networks play a critical role in controlling flow pathways of methane and water phases. Thus, study of flow in fracture networks via different numerical modelling methods is of importance. Compared to direct flow simulation, the Fracture Pipe Network Model (FPNM) is an effective means of modelling fluid flow in a fracture network due to its computational efficiency. However, constructing FPNM for authentic samples is challenging due to the limited fracture data at the core scale. In addition, application of FPNM for coal is challenging due to its complex internal fracture network. With X-ray micro-computed tomography (micro-CT) imaging, internal fracture network of coal samples can be visualised non-destructively, providing deterministic input data for FPNM. However, analysing fractures individually and characterising network connectivity based on micro-CT images are difficult, due to complex interactions, irregular fracture geometry, resolution limitation and image noises. In this paper, we develop a framework for constructing image-based FPNM for real fractured coal cores for fast prediction of permeability. Compared with conventional FPNM, each pipe element of our improved FPNM has the identical properties (orientations, length, aperture and roughness) with its corresponding data from the real sample. By comparing permeability values obtained from FPNMs, micro-CT images and voxelised DFNs, we conclude that FPNM can effectively estimate the permeability of original fracture networks while requiring significantly lower computational cost that make it a suitable framework for expensive multi-phase multiphysics flow simulations.

Country
Australia
Related Organizations
Keywords

550, anzsrc-for: 0306 Physical Chemistry (incl. Structural), anzsrc-for: 4004 Chemical engineering, 4019 Resources Engineering and Extractive Metallurgy, anzsrc-for: 4012 Fluid mechanics and thermal engineering, 620, anzsrc-for: 40 Engineering, anzsrc-for: 0913 Mechanical Engineering, anzsrc-for: 0904 Chemical Engineering, anzsrc-for: 4019 Resources Engineering and Extractive Metallurgy, Biomedical Imaging, 40 Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
Green