Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of co-pyrolysis of heavy metal contaminated biomass with magnesium carbonate on heavy metal deportment and pyrolytic product properties

Authors: He, Jing (R20842); Strezov, Vladimir; Zhou, Xiaoteng; Kumar, Ravinder; Weldekidan, Haftom; Kan, Tao;

Effects of co-pyrolysis of heavy metal contaminated biomass with magnesium carbonate on heavy metal deportment and pyrolytic product properties

Abstract

Abstract Vegetation has successfully been used for phytoremediation of heavy metal(loid) contaminated soils. Previous works found that the metal(loid)-enriched biomass can be converted into biofuels through pyrolysis. However, the potential emission of metal(loid)s at higher pyrolysis temperatures, the leaching potential of minerals in chars, and the quality of the products needs further consideration. In this work, the metal(loid)-enriched biomass was engineered by pre-mixing with magnesium carbonate to study the effect on pyrolytic product properties and metal(loid) deportment. Heavy metal contaminated mangrove grown in a land contaminated with a lead–zinc smelter slags was used as the biomass. The biomass and magnesium carbonate mixture as the feedstock was subjected to pyrolysis at temperatures from 300 to 900 °C under the heating rate of 10 °C/min. Results showed that the feedstock mainly decomposed at temperatures between 176 and 575 °C. Amongst the 10 studied metal(loid)s in this work, most elements exhibited more than 70% of elemental recovery in chars at pyrolysis temperatures up to 700 °C. Pyrolysis also enhanced heavy metal stability in chars produced at temperatures above 300 °C. This study indicated that co-pyrolysis of heavy metal contaminated biomass with magnesium carbonate enabled the pyrolysis temperature up to 700 °C with minimal environmental risks, providing a safe and value-added way of phytoremediation residual management.

Country
Australia
Keywords

660, XXXXXX - Unknown

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%