Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fuelarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fuel
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molten salt pyrolysis of biomass: The evaluation of molten salt

Authors: Zeng, Kuo; Yang, Xinyi; Xie, Yingpu; Yang, Haiping; Li, Jun; Zhong, Dian; Zuo, Hongyang; +3 Authors

Molten salt pyrolysis of biomass: The evaluation of molten salt

Abstract

Abstract To identify the performance and mechanism of variant molten salts during biomass pyrolysis in molten salt, the thermogravimetric and differential scanning calorimetry (TG-DSC) analyzer, fixed-bed reactor and thermodynamic equilibrium simulation were applied to study the thermal melting characteristics and stability of molten salt as well as the selectivity for biomass pyrolysis products. The KCl-ZnCl2 is appropriate for the preparation of H2-rich gas and the carbon material with abundant mesoporous structure due to its activation effect. At 850 °C, the pyrolysis gas obtained from KCl-ZnCl2 contained 42.22 vol% H2 with the H2/CO ratio reaching 1.69. The carbonates demonstrated excellent improvement for the gas composition of biomass pyrolysis products, with 75.43 vol% and 70.52 vol% syngas (H2 + CO) collected from the Li2CO3-K2CO3 and Li2CO3-Na2CO3-K2CO3 pyrolysis systems at 850 °C respectively. With the presence of carbonates, the bio-oil and char prepared by biomass pyrolysis also achieved better quality. The thermodynamic simulation revealed the shifting (formation of Li2O) of molten salt composition during biomass pyrolysis. The interaction between Li2CO3 and char under high temperature explained the high yield of CO in pyrolysis gas products, also resulted in the consumption of salts and limited the sustainable use of the molten salt pyrolysis system.

Related Organizations
Keywords

Thermal stability, [CHIM.GENI]Chemical Sciences/Chemical engineering, Thermodynamic simulation, Molten salt, Biomass, Pyrolysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 1%
Top 10%
Top 1%
bronze