
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biomass-derived porous carbons for sorption of Volatile organic compounds (VOCs)

handle: 10356/164504
Volatile organic compounds (VOCs) can lead to environmental pollution and threaten human health due to their toxic and carcinogenic nature. The emission of VOCs increases dramatically with the accelerated industrialization and economic growth. Adsorption is identified as one of the most promising recovery technologies owing to its cost-effectiveness, flexible operation, and low energy consumption. In particular, adsorption-based technologies have a high potential to recycle both adsorbents and adsorbates, typically to capture valuable aromatic VOCs from industrial exhaust. Porous materials such as carbon-based materials, zeolite-based materials, and organic polymers and their composites have been extensively developed for VOCs adsorption focusing in adsorption capacity, hydrophobic property, thermal stability and regenerability. Among them, porous carbons as VOCs adsorbents have attracted increasingly attention, because they can be regulated by tuning the pore structure for VOCs accessibility during the adsorption process. Moreover, porous carbons can adsorb target VOCs by controlling the pore structure and surface functional groups. Significantly, the pore size distribution of porous carbons mostly controls the VOCs sorption process. Micropores provide the main adsorption sites, while mesopores enhance the diffusion of VOCs. In this review, the adsorption mechanism of VOCs onto porous carbons was generally concluded. Porous carbons can be designed as a specific structure for adsorption of aromatic VOCs by controlling the pore structure, hydrophobic sites, π-electronic structure, and surface functional groups. Since there are limited review literatures on porous carbons derived from renewable resources for VOCs adsorption, this paper will provide an overview on the synthesis of porous carbons from biomass and other organic wastes for VOCs adsorption or integrated oxidation processes (e.g., photocatalysis, non-thermal plasma catalysis, chemical catalysis) under ambient conditions with the objective of guiding future works on the VOCs abatement technologies towards a sustainable direction. This work is supported by the National Natural Science Foundation of China (Grant 21607079) and “333 talent” project of Jiangsu Province.
- Nanyang Technological University Singapore
- Nanjing University of Information Science and Technology China (People's Republic of)
- Nanjing University of Information Science and Technology China (People's Republic of)
Activation, 620, :Environmental engineering [Engineering], Engineering::Environmental engineering, Biomass
Activation, 620, :Environmental engineering [Engineering], Engineering::Environmental engineering, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).59 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
