Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Article . 2025
Data sources: VBN
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of flammable gases produced from coal smoldering on methane explosion limits under nitrogen dilution in coal mines

Authors: Dong Ma; Zhenfang Shi; Tingfeng Zhu; Leilin Zhang; Chungen Yin;

Effect of flammable gases produced from coal smoldering on methane explosion limits under nitrogen dilution in coal mines

Abstract

The methane released from the coal combines with the air to form a very dangerous explosive mixture, which will be aggravated by the combustible gases of CO and H2 produced from the coal smoldering in coal mine. In this work, the effect of binary CO-H2 mixtures on methane explosion limits is investigated, and the inhibitory effect of N2 dilution on mixed combustible gases is analyzed via experiments and simulations subsequently. The methane explosion limits under different operating conditions are studied using a standard 20-L spherical chamber. The addition of the binary gas of CO-H2 mixtures exhibit a reduction for LEL and UEL of methane explosions, and remarkably enhance methane explosion risk. Moreover, the addition of binary gas mixture leads to a larger expansion range of the explosion triangle, compared to single CO conditions. In the simulations, the sensitivity of dominant elementary reactions on the H, O, and OH free radicals are analyzed based on the GRI mech 3.0 mechanisms. The inerting effect of N2 in CH4/CO/H2 component system is manifested in the combustion reaction kinetics of R53, R98, and R158, showing a significant inhibitory effect on the generation of these radicals during explosive process. The research results are helpful to understand the hazards of methane explosion in the coal fire area, and have certain guidance for the treatment of methane explosion in coal mine.

Country
Denmark
Keywords

Flammable gas, Methane explosions, Coal spontaneous combustion, Hydrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average