Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuel Processing Tech...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel Processing Technology
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biomass direct chemical looping for hydrogen and power co-production: Process configuration, simulation, thermal integration and techno-economic assessment

Authors: Calin-Cristian Cormos;

Biomass direct chemical looping for hydrogen and power co-production: Process configuration, simulation, thermal integration and techno-economic assessment

Abstract

Abstract Large scale biomass utilisation in energy-related applications is of paramount importance to reduce the fossil CO 2 emissions. At European level, about a third of energy consumption is expected to be covered by renewables in the next 15 years. In addition, the CO 2 emissions need to be reduced by 40% compared to the 1990 level. Within this context, innovative energy-efficient low carbon technologies have to be developed. Chemical looping is a promising conversion option to deliver reduced energy and cost penalties for CO 2 capture. This paper assesses biomass direct chemical looping (BDCL) concept for hydrogen and power co-production. The concept is illustrated using an ilmenite-based system to produce 400–500 MW net power with flexible hydrogen output (up to 200 MW th ). The performances are assessed through computational methods, with the mass and energy balances being used for in-depth techno-economic analysis. The biomass direct chemical looping delivers both high energy efficiencies (~ 42% net efficiency) with almost total carbon capture rate (> 99%) compared to other CO 2 capture options (e.g. gas–liquid absorption). The economic parameters show also a reduced CO 2 capture cost penalty for biomass direct chemical looping technology compared to gas–liquid absorption (e.g. 7% reduction of specific capital investment).

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 10%
gold