
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A temperature-history based model for the sticking probability of impacting pulverized coal ash particles


Anders Brink

Daniel Lindberg

Mikko Hupa

Manoj Paneru

Anders Brink

Daniel Lindberg

Mikko Hupa

Manoj Paneru

Mohamed Pourkashanian
Abstract Several investigations have shown that the differences between deposits obtained in oxy-firing and air-firing of coal mainly are due to differences in the flame temperature. Consequently, deposit rate predictions not taking the in-flight history into account are unlikely to be successful. In this paper, a model for predicting the deposit formation propensity of pulverized coal in oxy-fuel and air combustion due to the inertial impaction mechanism is developed and tested. The model builds on the use of viscosity as an indicator of the sticking probability. The composition and amount of the amorphous slag phase in the coal ash are calculated assuming thermodynamic equilibrium. Further, it is assumed that the maximum temperature the ash particle has experienced will control the composition and amount of the amorphous slag phase. As the ash particle impacts the probability to stick is estimated using the viscosity of this melt composition, but with the temperature of particle temperature at the moment of impaction. In the equilibrium calculation no material exchange with the gas phase is assumed. This assumption is based on X-ray diffraction (XRD) investigations of coal ash samples produced in a lab-scale burner simulating oxy-fuel and air combustion. The XRD showed that there was no significant impact on the mineralogy of the coal ash caused by the gas atmosphere. The probability of an ash particle to stick as a function of maximum experienced temperature and impact temperature was evaluated for three coals. For one of the coals a CFD study on particle deposit is done for a 300 kWth test facility.
- University of Stuttgart Germany
- Åbo Akademi University Finland
- University of Leeds United Kingdom
- Università degli studi di Salerno Italy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).33 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
