Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuel Processing Tech...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel Processing Technology
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel Processing Technology
Article . 2016
Data sources: VIRTA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel Processing Technology
Article . 2016
Data sources: VIRTA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel Processing Technology
Article . 2016
Data sources: VIRTA
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling of the catalytic effects of potassium and calcium on spruce wood gasification in CO2

Authors: Kramb, Jason; DeMartini, Nikolai; Perander, Magnus; Moilanen, Antero; Konttinen; Jukka;

Modeling of the catalytic effects of potassium and calcium on spruce wood gasification in CO2

Abstract

Using previously reported thermogravimetric analysis measurements, the effects of calcium and potassium on the char gasification rate of spruce wood were modeled. Spruce wood was leached of inorganic ash elements and doped with measured amounts of potassium and calcium. The wood was gasified in an isothermal thermogravimetric analysis device in CO2 where the devolatilization of the wood, char formation and char gasification all occurred inside the preheated reactor. A new method for separating the effects of devolatilization and char gasification is presented. Kinetic models were evaluated for their ability to describe the observed catalytic effects of potassium and calcium on the gasification rate. Two modified versions of the random pore model were able to accurately describe the measured conversion rates and the parameters of the kinetic models were found to be dependent on the calcium and potassium concentrations. Empirical correlations were developed to predict the char conversion rate from only the potassium and calcium concentration of the sample.

Keywords

biomass, gasification, modeling, reaction kinetics, SDG 7 - Affordable and Clean Energy, ta116, ta215, ta218

Powered by OpenAIRE graph
Found an issue? Give us feedback