Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della Ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2016
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel Processing Technology
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2016
Data sources: IRIS Cnr
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pseudo-component thermal decomposition kinetics of tomato peels via isoconversional methods

Authors: Paola Brachi; Francesco Miccio; Michele Miccio; Giovanna Ruoppolo;

Pseudo-component thermal decomposition kinetics of tomato peels via isoconversional methods

Abstract

The kinetics of the thermal decomposition of tomato peel residues under nitrogen atmosphere was studied by non-isothermal thermogravimetric analysis in the heating rate range 2-40 °C/min. Due to the complexity of the kinetic mechanism, which implies simultaneous multi-component decomposition reactions, an analytical approach involving the deconvolution of the overlapping decomposition steps from the overall differential thermogravimetric curves (DTG) and the subsequent application of model-free kinetic methods to the separated peaks was employed. Two freely available Matlab functions, which adopt a non-linear optimization algorithm to decompose a complex overlapping-peak signal into its component parts, were used. Different statistical functions (i.e., Gaussian, Voigt, Pearson, Lorentzian, equal-width Gaussian and equal-width Lorentzian) were tested for deconvolution and the best fits were obtained by using suitable combinations of Gaussian and Lorentzian functions. For the kinetic analysis of the deconvoluted DTG peaks, the Friedman's isoconversional method was adopted, which does not involve any mathematical approximation. The reliability of the derived kinetic parameters was proved by successfully reproducing two non-isothermal conversion curves, which were recorded at a heating rate of 60 °C/min and 80 °C/min and not included in data set used for the kinetic analysis. Seven pseudocomponents were identified as a result of the deconvolution procedure and satisfactorily associated with the main constituents of the investigated tomato peels.

Country
Italy
Keywords

Kinetic analysis; Pyrolysis; Torrefaction; Agro-industrial residues; Isoconversional method; Deconvolution, Agro-industrial residues; Deconvolution; Isoconversional method; Kinetic analysis; Pyrolysis; Torrefaction; Chemical Engineering (all); Fuel Technology; Energy Engineering and Power Technology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
Green
gold