Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Green Energy & E...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Green Energy & Environment
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Green Energy & Environment
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ammonia-induced CuO/13X for H2S removal from simulated blast furnace gas at low temperature

Authors: Erping Cao; Yuhua Zheng; Hao Zhang; Jianshan Wang; Yuran Li; Tingyu Zhu; Zhan-guo Zhang; +2 Authors

Ammonia-induced CuO/13X for H2S removal from simulated blast furnace gas at low temperature

Abstract

Blast furnace gas (BFG) is an important by-product energy for the iron and steel industry and has been widely used for heating or electricity generation. However, the undesirable contaminants in BFG (especially H2S) generate harmful environmental emissions. The desulfurization of BFG is urgent for integrated steel plants due to the stringent ultra-low emission standards. Compared with other desulfurization materials, zeolite-based adsorbents represent a viable option with low costs and long service life. In this study, an ammonia-induced CuO modified 13X adsorbent (NH3–CuO/13X) was prepared for H2S removal from simulated BFG at low temperature. The XRD, H2-TPR and TEM analysis proved that smaller CuO particles were formed and the dispersion of Cu on the surface of 13X zeolite was improved via the induction of ammonia. Evaluation on H2S adsorption performance of the adsorbent was carried out using simulated BFG, and the results showed that NH3–CuO/13X-3 has better breakthrough sulfur capacity, which was more than twice the sulfur capacity of CuO/13X. It is proposed that the enhanced desulfurization performance of NH3–CuO/13X is attributed to an abundant pore of 13X, and combined action of 13X and CuO. This work provided an effective way to improve the sulfur capacity of zeolite-based adsorbents via impregnation method by ammonia induction.

Related Organizations
Keywords

CuO, Blast furnace gas, Ecology, 13X zeolite, TJ807-830, Ammonia-induced, Desulfurization, Renewable energy sources, QH540-549.5

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold
Related to Research communities
Energy Research