Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Green Energy & E...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Green Energy & Environment
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Green Energy & Environment
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design of multifunctional interfaces on ceramic solid electrolytes for high-performance lithium-air batteries

Authors: Yunxin Shi; Ziyang Guo; Changhong Wang; Mingze Gao; Xiaoting Lin; Hui Duan; Yonggang Wang; +1 Authors

Design of multifunctional interfaces on ceramic solid electrolytes for high-performance lithium-air batteries

Abstract

High-energy-density lithium (Li)–air cells have been considered a promising energy-storage system, but the liquid electrolyte-related safety and side-reaction problems seriously hinder their development. To address these above issues, solid-state Li–air batteries have been widely developed. However, many commonly-used solid electrolytes generally face huge interface impedance in Li–air cells and also show poor stability towards ambient air/Li electrodes. Herein, we fabricate a differentiating surface-regulated ceramic-based composite electrolyte (DSCCE) by constructing disparately LiI-containing polymethyl methacrylate (PMMA) coating and Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) layer on both sides of Li1.5Al0.5Ge1.5(PO4)3 (LAGP). The cathode-friendly LiI/PMMA layer displays excellent stability towards superoxide intermediates and also greatly reduces the decomposition voltage of discharge products in Li–air system. Additionally, the anode-friendly PVDF-HFP coating shows low-resistance properties towards anodes. Moreover, Li dendrite/passivation derived from liquid electrolyte-induced side reactions and air/I-attacking can be obviously suppressed by the uniform and compact composite framework. As a result, the DSCCE-based Li–air batteries possess high capacity/low voltage polarization (11,836 mA h g−1/1.45 V under 500 mA g−1), good rate performance (capacity ratio under 1000 mA g−1/250 mA g−1 is 68.2%) and long-term stable cell operation (∼300 cycles at 750 mA g−1 with 750 mAh g−1) in ambient air.

Related Organizations
Keywords

Ecology, Polymers, Composite electrolyte, Li1.5Al0.5Ge1.5(PO4)3, TJ807-830, Li–air batteries, Ambient air, Renewable energy sources, QH540-549.5

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold
Related to Research communities
Energy Research