Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Green Energy and Int...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Green Energy and Intelligent Transportation
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A reinforcement learning approach to vehicle coordination for structured advanced air mobility

Authors: Sabrullah Deniz; Yufei Wu; Yang Shi; Zhenbo Wang;

A reinforcement learning approach to vehicle coordination for structured advanced air mobility

Abstract

Advanced Air Mobility (AAM) has emerged as a pioneering concept designed to optimize the efficacy and ecological sustainability of air transportation. Its core objective is to provide highly automated air transportation services for passengers or cargo, operating at low altitudes within urban, suburban, and rural regions. AAM seeks to enhance the efficiency and environmental viability of the aviation sector by revolutionizing the way air travel is conducted. In a complex aviation environment, traffic management and control are essential technologies for safe and effective AAM operations. One of the most difficult obstacles in the envisioned AAM systems is vehicle coordination at merging points and intersections. The escalating demand for air mobility services, particularly within urban areas, poses significant complexities to the execution of such missions. In this study, we propose a novel multi-agent reinforcement learning (MARL) approach to efficiently manage high-density AAM operations in structured airspace. Our approach provides effective guidance to AAM vehicles, ensuring conflict avoidance, mitigating traffic congestion, reducing travel time, and maintaining safe separation. Specifically, intelligent learning-based algorithms are developed to provide speed guidance for each AAM vehicle, ensuring secure merging into air corridors and safe passage through intersections. To validate the effectiveness of our proposed model, we conduct training and evaluation using BlueSky, an open-source air traffic control simulation environment. Through the simulation of thousands of aircraft and the integration of real-world data, our study demonstrates the promising potential of MARL in enabling safe and efficient AAM operations. The simulation results validate the efficacy of our approach and its ability to achieve the desired outcomes.

Related Organizations
Keywords

Advanced Air Mobility (AAM), TA1001-1280, TJ807-830, Multi-Agent Reinforcement Learning (MARL), Urban Air Mobility (UAM), Renewable energy sources, Transportation engineering, Air Traffic Control (ATC)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Top 10%
gold