
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Numerical simulation of the heat extraction in 3D-EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model

Abstract The geothermal heat production from Enhanced Geothermal System (EGS) is influenced by complex thermal-hydraulic-mechanical (THM) coupling process, it is necessary to consider THM coupling effects on utilization efficiency and production performance of EGS. The geothermal reservoir regarded as a fractured porous media consists of rock matrix blocks and discrete fractures. Based on local thermal non-equilibrium theory, a mathematical model and an ideal 3D-EGS numerical model incorporating THM coupling process are established to simulate the heat production process in EGS, and the distribution regularities of pressure, temperature, stress and deformation in geothermal reservoir are analyzed. The results show that the connecting fractures are the main flow paths and the transmission characteristic of reservoir is altered due to displacement of fractures caused by the change of pressure and temperature in reservoir. The main parameters controlling the outlet temperature are also studied by sensitivity analysis. An EGS case from Desert Peak geothermal reservoir is simulated with a 3D stochastically generated fracture model to evaluate EGS heat production performance. The results indicate that heat production time, thermal output and power generation can meet the commercial standard with appropriate reservoir and operation parameters, however, energy efficiency and overall heat recovery remain at low level.
- China University of Petroleum, Beijing China (People's Republic of)
- Sinopec China (People's Republic of)
- China University of Petroleum, Beijing China (People's Republic of)
- Sinopec China (People's Republic of)
- Sinopec (China) China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).215 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
