Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Geothermicsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Geothermics
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantitative assessment of calcite scaling of a high temperature geothermal well in the Kangding geothermal field of Eastern Himalayan Syntax

Authors: Yiman Li; Zhonghe Pang; Iwona Galeczka;

Quantitative assessment of calcite scaling of a high temperature geothermal well in the Kangding geothermal field of Eastern Himalayan Syntax

Abstract

Abstract High temperature geothermal systems in China are mainly located along the Himalayan belt and one of the main problems during production is calcite scaling. This paper presents a quantitative assessment of calcite scaling and possible removal and prevention methods for the Kangding geothermal field in the Western Sichuan Plateau, as an example. Reservoir fluid composition is reconstructed based on geochemical processes that may take place from reservoir to surface. Results show that the fluid is HCO3⋅Cl-Na or Cl⋅HCO3-Na type with a temperature of 259−283 °C. It’s over-saturated with respect to calcite in both surface and reservoir conditions but under-saturated to quartz and amorphous silica, indicating that the calcite scaling will be a problem. For well BH6, the fluid pH is 5.63 at reservoir conditions and the steam fraction at the wellhead is about 6.0 %. Adiabatic boiling calculation indicates that from reservoir to surface conditions, CO32− and CaCO3 concentrations in the fluid keep increasing and the fluid evolves to become over-saturated with respect to calcite and the saturation index is higher than 0.5 and calcite precipitates in the pipeline. The boiling depth is estimated to be about 150 m from the wellhead which can provide a guide for scaling depth determination. The calcite scale quantity is calculated to be 151−300 kg or a thickness of 0–2.94 cm according to the pumping test, consistent with what has been observed. Calcite scale can be removed mechanically or prevented by injecting chemical inhibitor as well as thermodynamic methods (including injecting acid, CO2, cold water and putting the feeding pump below the boiling depth). Counter-measures should be chosen based on the mode of utilization and its cost. For well BH6 that is planned to be used for power generation, chemical inhibition may be the choice.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%