

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Heat losses in ATES systems: The impact of processes, storage geometry and temperature

The technical and economic success of an Aquifer Thermal Energy Storage (ATES) system depends strongly on its thermal recovery efficiency, i.e. the ratio of the amount of energy that is recovered to the energy that was injected. Typically, conduction most strongly determines the thermal recovery efficiency of ATES systems at low storage temperatures (<25 °C), while the impact of buoyancy-driven flow can lead to high additional heat losses at high storage temperatures (>50 °C). To date, however, it is unclear how the relative contribution of these processes and mechanical dispersion to heat losses across a broad temperature range is affected by their interaction for the wide range of storage conditions that can be encountered in practice. Since such process-based insights are important to predict ATES performance and support the design phase, numerical thermo-hydraulic ATES simulations were conducted for a wide range of realistic operational storage conditions ([15–90 °C], [50,000–1,000,000 m3/year]) and hydrogeological conditions (aquifer thickness, horizontal hydraulic conductivity, anisotropy). The simulated heat loss fractions of all scenarios were evaluated with respect to analytical solutions to assess the contribution of the individual heat loss processes. Results show that the wide range of heat losses (10–80 % in the 5th year) is the result of varying contributions of conduction, dispersion and buoyancy-driven flow, which are largely determined by the geometry of the storage volume (ratio of screen length / thermal radius, L/Rth) and the potential for buoyancy-driven flow (q0) as affected by the storage temperature and hydraulic conductivity of the aquifer. For ATES systems where conduction dominates the heat losses, a L/Rth ratio of 2 minimizes the thermal area over volume ratio (A/V) and resulting heat losses for a given storage volume. In contrast however, the impact of dispersion decreases with L/Rth and particularly for ATES systems with a high potential for buoyancy-driven flow (q0 > 0.05 m/d), increasingly smaller L/Rth ratios (<1) strongly reduce the heat losses due to tilting. Overall, the results of this study support the assessment of thermal recovery efficiencies for particular aquifer and storage conditions, thereby aiding the optimization of initial ATES designs.
- Delft University of Technology Netherlands
- "TECHNISCHE UNIVERSITEIT DELFT Netherlands
- Delft University of Technology Netherlands
- KWR Watercycle Research Institute Netherlands
- Utrecht University Netherlands
Storage conditions, Renewable Energy, Sustainability and the Environment, Geology, ATES, SDG 7 - Affordable and Clean Energy, Aquifer thermal energy storage, Geotechnical Engineering and Engineering Geology, Heat loss fraction, Thermal storage geometry, Recovery efficiency, 333
Storage conditions, Renewable Energy, Sustainability and the Environment, Geology, ATES, SDG 7 - Affordable and Clean Energy, Aquifer thermal energy storage, Geotechnical Engineering and Engineering Geology, Heat loss fraction, Thermal storage geometry, Recovery efficiency, 333
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 10 download downloads 5 - 10views5downloads
Data source Views Downloads TU Delft Repository 10 5


