Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Environmental...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Environmental Change
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

Multi-model assessment of global hydropower and cooling water discharge potential under climate change

Authors: orcid Martina Flörke;
Martina Flörke
ORCID
Harvested from ORCID Public Data File

Martina Flörke in OpenAIRE
L. P. H. van Beek; orcid Stephanie Eisner;
Stephanie Eisner
ORCID
Harvested from ORCID Public Data File

Stephanie Eisner in OpenAIRE
orcid Yoshihide Wada;
Yoshihide Wada
ORCID
Harvested from ORCID Public Data File

Yoshihide Wada in OpenAIRE
orcid Marc F. P. Bierkens;
Marc F. P. Bierkens
ORCID
Harvested from ORCID Public Data File

Marc F. P. Bierkens in OpenAIRE
orcid M.T.H. van Vliet;
M.T.H. van Vliet
ORCID
Harvested from ORCID Public Data File

M.T.H. van Vliet in OpenAIRE
M.T.H. van Vliet;

Multi-model assessment of global hydropower and cooling water discharge potential under climate change

Abstract

Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971–2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18–33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11–14% (for RCP2.6 and the shared socio-economic pathway (SSP)1, SSP2, SSP4) and 41–51% (RCP8.5–SSP3, SSP5) of the world population by the 2080s.

Keywords

Planning and Development, Global and Planetary Change, Water resources, 550, Geography, Ecology, Monitoring, Policy and Law, Management, Global hydrological models, Water temperature, Climate change, Cooling water, Hydropower

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
111
Top 1%
Top 10%
Top 1%
Green
bronze
Upload OA version
Are you the author? Do you have the OA version of this publication?