Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Environmental...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Environmental Change
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of climate and socioeconomic changes on fire carbon emissions in the future: Sustainable economic development might decrease future emissions

Authors: Chae Yeon Park; Kiyoshi Takahashi; Fang Li; Junya Takakura; Shinichiro Fujimori; Tomoko Hasegawa; Akihiko Ito; +2 Authors

Impact of climate and socioeconomic changes on fire carbon emissions in the future: Sustainable economic development might decrease future emissions

Abstract

Fires and their associated carbon and air pollutant emissions have a broad range of environmental and societal impacts, including negative effects on human health, damage to terrestrial ecosystems, and indirect effects that promote climate change. Previous studies investigated future carbon emissions from the perspective of response to climate change and population growth, but the compound effects of other factors like economic development and land use change are not yet well known. We explored fire carbon emissions throughout the 21st century by changing five factors (meteorology, biomass, land use, population density, and gross domestic product [GDP] per capita). Compared to the historical period (2006–2015), global future fire carbon emissions decreased, mainly caused by an increase in GDP per capita, which leads to improvement in fire management and capitalized agriculture. We found that the meteorological factor has a strong individual effect under higher warming cases. Fires in boreal forests were particularly expected to increase because of an increase in fuel dryness. Our research should help climate change researchers consider fire-carbon interactions. Incorporating future spatial changes under diverse scenarios will be helpful to develop national mitigation and adaptation plans.

Country
Belgium
Related Organizations
Keywords

climate change, Biomass change, 21st century, Wildfire, economic development

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green
hybrid