
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Planktonic foraminifera response to the azores high and industrial-era global warming in the central-western Mediterranean Sea

handle: 20.500.14243/493521 , 10447/652033
The Mediterranean Sea is warming about 20 % more rapidly than global ocean and this phenomenon is impacting ecosystems and biodiversity. Planktonic foraminifera are an important component of surface and subsurface water ecosystems and food chains. Their species communities have been altering across the oceans since the Industrial Era, in response to the ongoing climate change, especially in the western Mediterranean Sea, where a significant productivity decrease has been recently reported. Here we show planktonic foraminifera and multispecies stable isotopes from three short sediment cores, recovered on the eastern flank of the Sicily Channel, central Mediterranean Sea. Results fully confirm the planktonic foraminifera productivity decrease in the Industrial Era, which is especially relevant for the second half of the 20th century. The planktonic foraminifera productivity decrease matches with a higher number of Large Azores High events, i.e., the establishment of an exceptional and persistent winter atmospheric high-pressure ridge over the western-central Mediterranean Sea. This is an unprecedented atmospheric phenomenon for the last millennia Mediterranean Sea history, as a direct response of the global warming. Surface productivity and DCM species are especially declining since ∼1960 CE, at expenses of winter mixed layer taxa, suggesting that the Azores High activity prevents a sustained water column vertical mixing and surface water nutrient fuelling. Our results document and confirm that the climate change has already been affecting Mediterranean marine ecosystems and the basic level of the trophic chain, by extending the surface water stratification period.
- University of Palermo Italy
- National Research Council Italy
Biodiversity; Productivity; Calcareous plankton; Climate change; Sicily channel, Sicily channe, Calcareous plankton, Climate change, Biodiversity, Biodiversity; Productivity; Calcareous plankton; Climate change; Sicily channe, Productivity
Biodiversity; Productivity; Calcareous plankton; Climate change; Sicily channel, Sicily channe, Calcareous plankton, Climate change, Biodiversity, Biodiversity; Productivity; Calcareous plankton; Climate change; Sicily channe, Productivity
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
