Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Heliyonarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Heliyon
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Heliyon
Article . 2022
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Statistical modeling and investigation of thermal characteristics of a new nanofluid containing cerium oxide powder

Authors: Behrooz Ruhani; Mansour Taheri Andani; Azher M. Abed; Nima Sina; Ghassan Fadhil Smaisim; Salema K. Hadrawi; Davood Toghraie;

Statistical modeling and investigation of thermal characteristics of a new nanofluid containing cerium oxide powder

Abstract

In this paper, the thermal conductivity (knf) of cerium oxide/ethylene glycol nanofluid is extracted for different temperatures (T = 25, 30, 35, 40, 45, and 50 °C) and the volume fraction of nanoparticles ( φ = 0, 0.25, 0.5, 0.75, 1, 1.5, 2 and 2.5%) and then knf is predicted by two methods including Artificial Neural Network (ANN) and fitting method. For both methods, the results have been presented and compared. The experiments showed that with increasing φ and temperature, the thermal conductivity ratio (TCR) of nanofluid increases. It was also observed that when the experiments are performed at high temperatures, the rate of increase in knf is much higher than the change in the same amount of φ change at low temperatures. An ANN with 7 neurons has a correlation coefficient very close to 1 and this proves that the outputs are compatible with experimental results. Also, it can be seen that the ANN could predict the thermal behavior of cerium oxide/ethylene glycol nanofluid more accurately.

Related Organizations
Keywords

H1-99, Science (General), Artificial Neural Network (ANN), Cerium oxide, Nanofluid, Social sciences (General), Q1-390, Thermal conductivity, Ethylene glycol, Research Article

Powered by OpenAIRE graph
Found an issue? Give us feedback