
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Statistical modeling and investigation of thermal characteristics of a new nanofluid containing cerium oxide powder

In this paper, the thermal conductivity (knf) of cerium oxide/ethylene glycol nanofluid is extracted for different temperatures (T = 25, 30, 35, 40, 45, and 50 °C) and the volume fraction of nanoparticles ( φ = 0, 0.25, 0.5, 0.75, 1, 1.5, 2 and 2.5%) and then knf is predicted by two methods including Artificial Neural Network (ANN) and fitting method. For both methods, the results have been presented and compared. The experiments showed that with increasing φ and temperature, the thermal conductivity ratio (TCR) of nanofluid increases. It was also observed that when the experiments are performed at high temperatures, the rate of increase in knf is much higher than the change in the same amount of φ change at low temperatures. An ANN with 7 neurons has a correlation coefficient very close to 1 and this proves that the outputs are compatible with experimental results. Also, it can be seen that the ANN could predict the thermal behavior of cerium oxide/ethylene glycol nanofluid more accurately.
- Imam Reza International University Iran (Islamic Republic of)
- Islamic Azad University of Najafabad Iran (Islamic Republic of)
- Imam Reza International University Iran (Islamic Republic of)
- Islamic Azad University of Najafabad Iran (Islamic Republic of)
- Iraqi University Iraq
H1-99, Science (General), Artificial Neural Network (ANN), Cerium oxide, Nanofluid, Social sciences (General), Q1-390, Thermal conductivity, Ethylene glycol, Research Article
H1-99, Science (General), Artificial Neural Network (ANN), Cerium oxide, Nanofluid, Social sciences (General), Q1-390, Thermal conductivity, Ethylene glycol, Research Article
