Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Heliyonarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Heliyon
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Heliyon
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Darcy flow of convective and radiative Maxwell nanofluid over a porous disk with the influence of activation energy

Authors: Muhammad Naveed Khan; Abdul Hafeez; Showkat Ahmed Lone; Salmeh A. Almutlak; Ibrahim E. Elseey;

Darcy flow of convective and radiative Maxwell nanofluid over a porous disk with the influence of activation energy

Abstract

This study reveals an incompressible steady Darcy flow of Maxwell nanofluid by a porous disk with the impact of activation energy. The liquid flow is due to a stretchable rotating disk. The heat equation also includes the impact of heat source/sink and radiation for the purpose of heat transportation. The von Karman transformations are utilized to gain the dimensionless form of ordinary differential equations (ODEs). The solutions are visualised in the form of graphical results using bvp 4c method in Matlab software. The ranges of the associated physical parameters as, 0.0≤β≤0.9, 0.0≤M≤0.9, 0.0≤λ≤1.5, 0.1≤R≤0.9, -0.2≤s≤1.3, 0.3≤Bi≤0.6, 0.0≤γ≤0.15, 0.1≤Nt≤2.0, 0.2≤Nb≤0.8, 0.0≤Rd≤0.3, 0.0≤σ≤1.5, and 0.0≤E≤0.9 are provided for the graphical solutions developed for the problem. The data of Nussetl and Sherwood numbers are presented here with regard to various physical parameters. According to the numerical results, increasing the Deborah number has a trend to decrease the radial curves. Moreover, the temperature distribution is increased considerably for rising the radiation parameter and the higher rate of the rotation parameter shows a weaker concentration trend. To validate the numerical approach, an excellent comparison is established using a tabular description. To sum up, the current study effectively fills a gap in the antecedent literature.

Keywords

Social sciences (General), H1-99, Q1-390, Science (General), Maxwell nanofluid, Thermal radiation, Darcy law, Activation energy, Heat source/sink, Covective boundary condition

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold
Related to Research communities
Energy Research