Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Heliyonarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Heliyon
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Heliyon
Article . 2024
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The impact of carbon quantum dots derived from spent coffee grounds on the droplet combustion of diesel/n-butanol blend

Authors: C. Zapata-Hernandez; G. Durango-Giraldo; Miguel Gomez-Echeverri; R. Buitrago-Sierra; Bernardo Herrera; Karen Cacua;

The impact of carbon quantum dots derived from spent coffee grounds on the droplet combustion of diesel/n-butanol blend

Abstract

As global concerns surrounding climate change mount and fossil fuel reserves diminish, the application of additives in internal combustion engines is increasingly prevalent. Butanol and carbonaceous nanomaterials, such as carbon quantum dots (CQD), are being employed as additives to increase engine efficiency and mitigate the emission of pollutants. Nevertheless, understanding the impact of these additives on combustion behavior at the droplet scale through combustion assessments before their use in engines is crucial. In this study, our main objective was to assess the impact of incorporating CQD dispersed in n-butanol as additives to conventional diesel fuel on the combustion characteristics at the droplet scale. CQD were obtained from spent coffee grounds (SCGs) using n-butanol as a solvent. The product obtained was mixed with Colombian commercial diesel (10 % vol. palm oil biodiesel), and its combustion was evaluated using the droplet combustion method. Before the CQD synthesis, SCGs were characterized by thermogravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM). CQD were characterized via Fourier transform infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM), UV-vis, and fluorescence spectroscopy. Results indicated that adding n-butanol and CQD to commercial diesel leads to a 5.4 % and 16.5 % increase in droplet ignition delay, respectively. These additives also cause droplet contraction and expansion cycles, resulting in unstable combustion. However, CQD reduces the frequency of microexplosions caused by boiling n-butanol inside the droplet, which mitigates instabilities during droplet combustion. Including CQD can enhance fuel evaporation by increasing the density of nucleation sites for bubble formation and preventing micro-explosions, thereby leading to stable combustion. These attributes can significantly influence the performance of blends in Compression Ignition (CI) Engines.

Keywords

H1-99, Science (General), Butanol, CQD, Fuel additives, Droplet combustion, Carbon quantum dots, Social sciences (General), Q1-390, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold