
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids

Abstract Experimental study on the effects of solid volume fraction and temperature on thermal conductivity of DWCNT(inner diameter of 3 nm)-ZnO(diameter of 10-30 nm)/water-ethylene glycol (60:40) nanofluids have been performed using KD2-Pro thermal analyzer in details. The experiments are carried out at solid concentration up to 1% and temperature ranging from 25 to 50 °C. Based on experimental results, using non-linear regression on results of experiments, a correlation as a function of temperature and solid volume fraction has been proposed. Measured data show that the relative thermal conductivity enhances with increasing concentration of nanoparticles. The increasing temperatures also increase the thermal conductivity of nanofluids, although its effect on the thermal conductivity compared to the effect of volume fraction is lower.
- Islamic Azad University of Najafabad Iran (Islamic Republic of)
- Islamic Azad University of Falavarjan Iran (Islamic Republic of)
- Islamic Azad University of Falavarjan Iran (Islamic Republic of)
- Islamic Azad University of Najafabad Iran (Islamic Republic of)
- National Taipei University of Technology Taiwan
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).166 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
