Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IFAC-PapersOnLinearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IFAC-PapersOnLine
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IFAC-PapersOnLine
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Scalable computational framework using intelligent optimization: Microgrids dispatch and electricity market joint simulation

Authors: Filipe Sousa; Zita Vale; Joao Soares; Tiago Pinto; Nuno Borges; Andrea Michiorri;

Scalable computational framework using intelligent optimization: Microgrids dispatch and electricity market joint simulation

Abstract

Abstract Worldwide microgrid capacity is expected to reach 7 GW and a market value of $35 billion dollars in the next few years. The decentralization of the generation dispatch role and different ownership models concerning microgrids, will contribute to increase the complexity of the future power systems. Analyzing new policies and strategies as well as evaluating those impacts is only possible with the use of sophisticated simulation tools. This paper presents a scalable computational simulation to address microgrid dispatch and the impact in the electricity market. Computational intelligence techniques are integrated to improve the effectiveness of the simulation tool. These techniques include CPLEX; differential search algorithm and quantum particle swarm optimization. Each microgrid player is able to solve a day-ahead scheduling problem and submit bids to the electricity market agent (spot market), which calculates the market clearing price. The developed case study with a large number of players totaling about 150,000 consumers suggest the relevance of the developed computational framework.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback