Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IFAC-PapersOnLinearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IFAC-PapersOnLine
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2022
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2022
License: CC BY
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
http://dx.doi.org/10.1016/j.if...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimizing methane and methanol production from integrated steelworks process off-gases through economic hybrid model predictive control

Authors: Dettori, Stefano; Matino, Ismael; Iannino, Vincenzo; Colla, Valentina; Hauser, Alexander; Wolf-Zöllner, Philipp; Haag, Stephane;

Optimizing methane and methanol production from integrated steelworks process off-gases through economic hybrid model predictive control

Abstract

Within integrated steelworks, process off-gases are important energy carriers. After suitable treatment, they are typically exploited for heating purposes and for production of steam and electricity. However, their main compounds (COxand H2) can also be valorized through synthesis reactors, which provide valuable products, such as methane and methanol, while reducing CO2emissions. To this aim, large quantities of cheaply and greenly produced hydrogen must be available to enrich process off-gases and make them suitable to the synthesis processes. The enrichment and valorization of process off-gases requires an advanced control system that ensure optimal economic valorization and safe operation of the plants. This paper proposes a solution relying on a dispatch controller based on Economic Hybrid Model Predictive Control, which integrates a set of process models based on physical/chemical laws and machine learning-based models for disturbances forecasting. The controller implements a mixed integer linear programming approach after the linearization of the dynamics of controlled systems every control step. The optimization problem also includes a set of constraints related to the operating condition limits of each equipment. Economic and environmental impacts of the proposed approach are compared with respect to the standard use of process off-gases. The feasibility of the approach strictly depends on the cost of hydrogen, and, in the case of low-cost green electricity sources, the results are highly encouraging. The approach was successfully tested on-line to supervise the operation of pilot methanol and methane reactors.

Country
Italy
Keywords

Methanol and Methane Synthesis Reactors, Deep Echo State Networks, Integrated Steelworks Process Off-gases, Optimized Hydrogen Production, Economic Hybrid Model Predictive Control

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 1
    download downloads 3
  • 1
    views
    3
    downloads
    Data sourceViewsDownloads
    ZENODO13
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
6
Top 10%
Average
Top 10%
1
3
Green
gold