
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Security constrained economic load dispatch using improved particle swarm optimization suitable for utility system

The objective of this paper is to evolve simple and effective methods for the economic load dispatch (ELD) problem with security constraints in thermal units, which are capable of obtaining economic scheduling for utility system. In the proposed improved particle swarm optimization (IPSO) method, a new velocity strategy equation is formulated suitable for a large scale system and the features of constriction factor approach (CFA) are also incorporated into the proposed approach. The CFA generates higher quality solutions than the conventional PSO approach. The proposed approach takes security constraints such as line flow constraints and bus voltage limits into account. In this paper, two different systems IEEE-14 bus and 66-bus Indian utility system have been considered for investigations and the results clearly show that the proposed IPSO method is very competent in solving ELD problem in comparison with other existing methods.
- Anna University, Chennai India
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).44 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
