
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A robust optimization approach to energy hub management

Abstract In this paper a robust optimization problem of an energy hub operations is presented. An energy hub is a multi-generation system where multiple energy carriers input to the hub are converted, stored and distributed in order to satisfy energy demands. The solution to energy hub operation problem determines the energy carriers to be purchased and stored in order to satisfy energy requests while minimizing a cost function. A control approach using Robust Optimization (RO) techniques is proposed; specifically the energy carriers input to the hub, their distribution among converters and their storage are determined in order to satisfy the energy hub output time-varying requests while minimizing the energy expenses. Bounded uncertainties on energy hub parameters are taken into account and RO methods are exploited to gain robust solutions which are feasible for all values, or for a selected subset, of uncertain data. Simulation results underline the benefits resulting from the application of the proposed approach to an energy hub structure designed in Waterloo, Canada.
- University of Sannio Italy
- University of Salford United Kingdom
- University of Sannio Italy
Energy efficiency, Short-term operation scheduling in energy hub, Energy hub modeling, Robust optimization
Energy efficiency, Short-term operation scheduling in energy hub, Energy hub modeling, Robust optimization
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).264 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
