Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Electrical Power & Energy Systems
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Security-based multi-objective congestion management for emission reduction in power system

Authors: Ashkan Rahimi-Kian; Majid Oloomi-Buygi; Mohammad Reza Salehizadeh;

Security-based multi-objective congestion management for emission reduction in power system

Abstract

Power system operation in the era of post-restructuring faces several challenges: transmission congestion frequently occurs, security is deterred more than in the past, emission reduction is becoming a matter of importance and intermittent renewable power generation resources (RPGR) have been widely promoted. This paper intends to solve these challenges in a multi-objective optimisation framework. The proposed procedure comprises two stages: in the a priori stage, transmission congestion management cost (TCMC) and emission are traded-off via a proposed stochastic augmented e-constraint technique which yields a set of non-dominated solutions. In the a posteriori stage, a solution is selected by considering power system security. For this purpose, two strategies are proposed: in the first strategy, based on a proposed managerial vision, a combination of data envelopment analysis introduced by Charnes, Cooper, and Rhodes (CCR-DEA), cross-efficiency technique and robustness analysis is deployed to select the most robust super-efficient solution. The advantage of the proposed a posteriori approach is that selecting the final solution is not subjected to assigning weights to the objective functions and/or providing higher-level information. In the second strategy, first the effective scenarios due to outage of transmission components are identified using CCR-DEA and next, each scenarios’ degree of severity (DOS) is obtained using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The sums of the DOS of non-dominated solutions’ effective scenarios are evaluated for final decision making. The proposed approach is applied to IEEE 24 bus test system and the results are analysed.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
gold